Uncertainty Principle

The uncertainty principle in Quantum Mechanics says that position and
momentum cannot be simultaneously localized. There are many mathematical
formulations of this principle. Here are a few:

1. If f is a unit vector in L?(R) and a,b € R then /(x—a)2 1f(2)]? dw/(y—
.2
fy)| dy =

1
3

2. Let f € L'. Then f and f cannot both have compact support
3. If f is a non-zero element of L?(R) then m{xz : f(z) # 0} and m{x :

f(z) # 0} cannot both be finite.
4. If f is a measurable function such that |f(z)| < Ae=” and ‘f(y)‘ <

Be= %" for all x where a, B are positive numbers with a8 > 1 then f =0 a.e.

5. (Bouting) 1 < 12, [ [ 110l
Proof of 1: we prove below that if the left side of the inequality is finite then

el dzdy < oo implies f = 0 a.e..

f is absolutely continuous, f’ € L? and f'(x) = —ixf(z) a.e.. Assuming this
we have ) ) ) )
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Since the integrals on both sides converge in L? as & — —oo and 3 — oo it

follows that :cf(a:)f(z)ﬁa also converges to a finite limit as @« — —oo and
8 — oc. This limit has to be 0 because, otherwise, |z| | f(z)|? is bounded below

2
which contradicts the fact that f € L?. Now /zQ |f ()] dz/y2 f(y)‘ dy >

f

af'(z)f ()

Lemma

IffeLzand/y2

da)? = § [ 1o f(apdo = 3.

2
dy < oo then f is absolutely continuous, f’ € L?

f)

and f’(x) = mf(a:) a.e..



Proof of the lemma: let ¢(x) = /g(t)dt where g € L? is such that g(y) =
0

iyf(y). Such a function g exists because iy f(y) € L?. Assume that ¢ € L2. This
fact is established below. [ See Dym and McKean’s proof of Heisenberg’s inequal-
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Noting that / e~ ¢p(z)dx and / p:zt:g(ﬂc)dac converge in L? norm as o —

[e3% (e
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et

_:: /g(t)dt\g also converges as @ — —oo and
0

—oo and 8 — oo it follows that

T

e—lt’L‘

f — oo. Hence — /g(t)dt|§ also converges as a — —oo and 3 — oo to an

0
L? function (of ¢). If this limit is not zero on a set of positive measure then
e~ and e~ converge for all ¢ in a set of positive measure which is false. This

gives ¢(t) = % = f(t) a.e.. So ¢ = f a.e. which implies that f is absolutely

continuous and f’ = g € L2. Also f/(t) = g(t) = itf(t). This proves the lemma.
Back to the proof of the theorem:

.2
Now let g(z) = f(xz+a)e~**. Then ||g||, = 1 and we have /ch |g(x)|2dgc/y2 ‘g(y)‘ dy >

. 2 .
. 2
1. This gives /(m —a)?|f(z)] dm/(y — b)? ‘g(y—b)) dy > %. But g(t) =
. R 9 . 2
f(t+b) so /(y — b)? )g(y — b)‘ dy = /(y —b)?|f(y)| dy and this completes
the proof when f a C'°° function with compact support.
Property 2 is easy: the Fourier inversion formula shows that f extends to
an entire function and hence its zeros are isolated.
Property 3 can be proved using Poisson Summation Formula. (See my notes)
Property 4 follows from Property 5. We do not prove Property 5 here. A
reference for this proof is: Lars Hormander, "A uniqueness Theorem Of Beurling
for Fourier Transform Pairs", Ark. Math, 29, 237-240.

Proof of Heisenberg’s inequality from Dym and McKean:

2 .
Let f € L? and /502 |f(a:)|2d:c < oo,/y2 dy < oo. Note that f €

L' because (/ f(y)‘dy)Q < / y?
{ly[>1} {ly[>1}

fIqy<1y € L2([—,1,1]) € L*([~,1,1]). Thus f is a continuous function. There
exists a sequence {ay,} — oo such that a, \f(an)|2 + |f(—0¢n)\2 — 0. For,

} (y)

f(y)‘dy/ ;—Qdy < oo and
{lyl>1}



otherwise, hzrr_l)gf{w |f(2)]?+x |f(=z)|°} > 0 and /{|f(ac)|2+\f(—x)|2}dw =00
which is a contradiction. 2VVe claim that there is a sequence {f,,} in S such that
/(1 +92) | fuly) — f(y)| dy — 0. For this just note that C* functions with
compact support are dense in L?((1+y?)dy) and any C*° function with compact
support is the Fourier tkransform of some function in S. Let g jbe a function in

L? such that g(y) = iyf(y). Such a function exists because iy f(y) € L. Note
12 - g 2
that Ifu = FIB+ 12— gl3 = Ifa = A3+ () = 9|, = | Fa0) - F0)
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Also, since f € L' and f, € L' | f,(z) — f(2)° = (\/%

+

iyfn(y) - ny (y)
f — gin L2

Jgn(y) }(y)‘ dy — 0. Thus, f, — f and

2

\/g(/(l‘*‘y )‘fn( ) — f(y) )(/1+y dy). Thus, f, — f uniformly.

Remark: use these facts we prove that the functlon ¢ defined in the earlier

proof is indeed an L? function: Clearly / fht)dt — / t)dt for each x. Hence
¢(z) = lim[fn(2) — fn(0)] = f(z) — f(O ) If f(0 )—Olt follows that ¢ = f € L*.
For the general case let fi(z) = f(z) — f(0)e =2%/2 Then f1(0) =0, f; € L?

and yf1(y) = yf(y) — f(O)e*tZ/2 € L?. If the lemma above holds in the special
case f(0) = 0 we can conclude that f; is is absolutely continuous, f| € L? and

fi(x) = iz fi(x) a.e.. This shows that f is is absolutely continuous, f’ € L? and
F'(@) = inf(z) ae

Back to Dym and McKean’s proof: /:c2 |f(2)]? dnlc/y2 fly)

2 |f(@) d / l9(v) 2 dy
> ( / e (2)g(x)| o). (1)

Now / 2lg(2) (@) + f(2)g(@)dz = lim [ 2[g(z)f(2) + f(2)g(x)]da

n—oo

—an
Qn

= tim lim [ o[f{(2) fi(®) + fi(@) fi(2)]dw (because fy — f and f} — g

[t - }<y>>\ dt)? <
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in 12). Hence [alg(o)f(z) + f@gle)lds = lim tim [ ol (2)do =

Tim_lim {z i (@)%, — [ |fu(@) da] = ~Lsince || £, = Tand lim lim o, |fif? (o) =
lim a, |f|* (an) = 0 and lim klim an | ful® (—an) = lim oy, |f° (—an) = 0
by our choice of {a,}. We now get 1 = —%/x[g(:v)f(_x) + f(x)g(_:v)]dx =

2
dy

zg(z)f(z)

~Re [alg(o)f(o)de < [ dvand } < ([ Jogla)f(o)|0)? < [ 5(a) s [ o2 )

by (1). Equality holds if and only if g(x) = xf(z) a.e. implies /f,’L(t)dt —
0

x x x

/g(t)dt = /tf(t)dt and so f(z) — f(0) = /tf(t)dt for all  which implies
0 0 0

f(z) = ce?™ for some real numbers ¢ and d. Of course, d < 0 because f € L.
Conversely if f is of this type then equality holds in Heisenberg’s inequality. The

inequality /(m —a)?|f(z)]? dm/(y —b)? f(y)

dy > i follows be changing f
to f(x +a)e~ =,

Alternative proof of the lemma above viz.:

Iff€L2and/y2

f(y)’ dy < oo then f is absolutely continuous, f’ € L?

and f'(z) =iz f(z) a.e..
We have f,,(z) = fn(0) + /f,’t(t)dt. This gives f(z) = f(0) + /g(t)dt since
0 0
fn — f pointwise and f/ — g in L?. This completes the proof!



