
Uncertainty Principle

The uncertainty principle in Quantum Mechanics says that position and
momentum cannot be simultaneously localized. There are many mathematical
formulations of this principle. Here are a few:

1. If f is a unit vector in L2(R) and a; b 2 R then
Z
(x�a)2 jf(x)j2 dx

Z
(y�

b)2
����^f(y)����2 dy � 1

4 :

2. Let f 2 L1. Then f and
^

f cannot both have compact support
3. If f is a non-zero element of L2(R) then mfx : f(x) 6= 0g and mfx :

^

f(x) 6= 0g cannot both be �nite.

4. If f is a measurable function such that jf(x)j � Ae��x
2

and

����^f(y)���� �
Be��y

2

for all x where �; � are positive numbers with �� > 1 then f = 0 a.e.

5. (Beurling) f 2 L2;
Z Z

jf(x)j
����^f(x)���� ejxyjdxdy <1 implies f = 0 a.e..

Proof of 1: we prove below that if the left side of the inequality is �nite then

f is absolutely continuous, f 0 2 L2 and
^

f 0(x) = �ix
^

f(x) a.e.. Assuming this
we haveZ

x2 jf(x)j2 dx
Z
y2
����^f(y)����2 dy = Z x2 jf(x)j2 dxZ �����yi^f(y)����2 dy = Z x2 jf(x)j2 dxZ jf 0(y)j2 dy

(because kf 0k22 =




 ^f 0



2

2

). Thus
Z
x2 jf(x)j2 dx

Z
y2
����^f(y)����2 dy � (Z ����xf 0(x) �

f(x)

���� dx)2.
Now note that

x(f(x)
�
f(x))0 = xf 0(x)

�
f(x)+xf(x)

�
f 0(x) = 2xReff 0(x)

�
f(x)g � �2

����xf 0(x) �
f(x)

����.
Hence

Z �

�

����xf 0(x) �
f(x)

���� dx � � 1
2

Z �

�

x(f(x)
�
f(x))0dx = � 1

2xf(x)
�
f(x)j���+ 1

2

Z �

�

f(x)
�
f(x)dx.

Since the integrals on both sides converge in L2 as � ! �1 and � ! 1 it

follows that xf(x)
�
f(x)j��� also converges to a �nite limit as � ! �1 and

� !1. This limit has to be 0 because, otherwise, jxj jf(x)j2 is bounded below

which contradicts the fact that f 2 L2. Now
Z
x2 jf(x)j2 dx

Z
y2
����^f(y)����2 dy �

(

Z ����xf 0(x) �
f(x)

���� dx)2 � 1
4

Z
f(x)

�
f(x)dx = 1

4 .

Lemma

If f 2 L2 and
Z
y2
����^f(y)����2 dy <1 then f is absolutely continuous, f 0 2 L2

and
^

f 0(x) = ix
^

f(x) a.e..
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Proof of the lemma: let �(x) =

xZ
0

g(t)dt where g 2 L2 is such that ^g(y) =

iy
^

f(y). Such a function g exists because iy
^

f(y) 2 L2. Assume that � 2 L2. This
fact is established below. [ See Dym and McKean�s proof of Heisenberg�s inequal-

ity] Now
Z �

�

e�itx�(x)dx =

Z �

�

e�itx
xZ
0

g(t)dtdx = e�itx

�it

xZ
0

g(t)dtj���
Z �

�

e�itx

�it g(x)dx.

Noting that
Z �

�

e�itx�(x)dx and
Z �

�

e�itx

�it g(x)dx converge in L
2 norm as � !

�1 and � !1 it follows that e
�itx

�it

xZ
0

g(t)dtj�� also converges as �! �1 and

� ! 1. Hence e�itx

�it

xZ
0

g(t)dtj�� also converges as � ! �1 and � ! 1 to an

L2 function (of t). If this limit is not zero on a set of positive measure then
e�it� and e�it� converge for all t in a set of positive measure which is false. This

gives
^

�(t) =
^
g(t)
it =

^

f(t) a.e.. So � = f a.e. which implies that f is absolutely

continuous and f 0 = g 2 L2: Also
^

f 0(t) =
^
g(t) = it

^

f(t). This proves the lemma.
Back to the proof of the theorem:

Now let g(x) = f(x+a)e�ibx. Then kgk2 = 1 and we have
Z
x2 jg(x)j2 dx

Z
y2
���^g(y)���2 dy �

1
4 . This gives

Z
(x � a)2 jf(x)j2 dx

Z
(y � b)2

���^g(y � b)���2 dy � 1
4 . But

^
g(t) =

^

f(t + b) so
Z
(y � b)2

���^g(y � b)���2 dy = Z (y � b)2 ����^f(y)����2 dy and this completes
the proof when f a C1 function with compact support.
Property 2 is easy: the Fourier inversion formula shows that f extends to

an entire function and hence its zeros are isolated.
Property 3 can be proved using Poisson Summation Formula. (See my notes)
Property 4 follows from Property 5. We do not prove Property 5 here. A

reference for this proof is: Lars Hormander, "A uniqueness Theorem Of Beurling
for Fourier Transform Pairs", Ark. Math, 29, 237-240.

Proof of Heisenberg�s inequality from Dym and McKean:

Let f 2 L2 and
Z
x2 jf(x)j2 dx < 1;

Z
y2
����^f(y)����2 dy < 1. Note that

^

f 2

L1 because (
Z
fjyj>1g

����^f(y)���� dy)2 � Z
fjyj>1g

y2
����^f(y)���� dyZ

fjyj>1g

1
y2 dy < 1 and

^

fIfjyj�1g 2 L2([�; 1; 1]) � L1([�; 1; 1]). Thus f is a continuous function. There
exists a sequence f�ng ! 1 such that �n jf(�n)j2 + �n jf(��n)j2 ! 0. For,
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otherwise, lim inf
x!1

fx jf(x)j2+x jf(�x)j2g > 0 and
Z
fjf(x)j2+jf(�x)j2gdx =1

which is a contradiction. We claim that there is a sequence ffng in S such thatZ
(1 + y2)

���� ^fn(y)� ^

f(y)

����2 dy ! 0. For this just note that C1 functions with

compact support are dense in L2((1+y2)dy) and any C1 function with compact
support is the Fourier transform of some function in S. Let g be a function in

L2 such that
^
g(y) = iy

^

f(y). Such a function exists because iy
^

f(y) 2 L2. Note

that kfn � fk22+ kf 0n � gk
2
2 = kfn � fk22+




(f 0n)^ � ^
g



2
2
=





 ^

fn(y)�
^

f(y)





2
2

+



iy ^fn(y)� iy ^f(y)



2
2

=

Z
(1 + y2)

���� ^fn(y)� ^

f(y)

����2 dy ! 0. Thus, fn ! f and

f 0n ! g in L2.

Also, since
^

f 2 L1 and
^

fn 2 L1 jfn(x)� f(x)j2 = ( 1p
2�

����Z eitx( ^fn(y)� ^

f(y))

���� dt)2 �
1p
2�
(

Z
(1 + y2)

���� ^fn(y)� ^

f(y)

����2)(Z 1
1+y2 dy). Thus, fn ! f uniformly.

Remark: use these facts we prove that the function � de�ned in the earlier

proof is indeed an L2 function: Clearly

xZ
0

f 0n(t)dt!
xZ
0

g(t)dt for each x. Hence

�(x) = lim[fn(x)� fn(0)] = f(x)� f(0): If f(0) = 0 it follows that � = f 2 L2.
For the general case let f1(x) = f(x) � f(0)e�x2=2. Then f1(0) = 0; f1 2 L2

and y
^

f1(y) = y
^

f(y)� f(0)e�t2=2 2 L2. If the lemma above holds in the special
case f(0) = 0 we can conclude that f1 is is absolutely continuous, f 01 2 L2 and
^

f 01(x) = ix
^

f1(x) a.e.. This shows that f is is absolutely continuous, f 0 2 L2 and
^

f 0(x) = ix
^

f(x) a.e..

Back to Dym and McKean�s proof:
Z
x2 jf(x)j2 dx

Z
y2
����^f(y)����2 dy = Z x2 jf(x)j2 dxZ ���^g(y)���2 dy =Z

x2 jf(x)j2 dx
Z
jg(y)j2 dy

� (
Z ����xf(x) �

g(x)

���� dx)2. (1)
Now

Z
x[g(x)

�
f(x) + f(x)

�
g(x)]dx = lim

n!1

�nZ
��n

x[g(x)
�
f(x) + f(x)

�
g(x)]dx

= lim
n!1

lim
k!1

�nZ
��n

x[f 0k(x)
�

fk(x) + fk(x)
�

f 0k(x)]dx (because fk ! f and f 0k ! g
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in L2). Hence
Z
x[g(x)

�
f(x) + f(x)

�
g(x)]dx = lim

n!1
lim
k!1

�nZ
��n

x[jfkj2]0(x)dx =

lim
n!1

lim
k!1

fx jfkj2 (x)j�n��n�
�nZ

��n

jfk(x)j2 dx] = �1 since kfk2 = 1 and lim
n!1

lim
k!1

�n jfkj2 (�n) =

lim
n!1

�n jf j2 (�n) = 0 and lim
n!1

lim
k!1

�n jfkj2 (��n) = lim
n!1

�n jf j2 (��n) = 0

by our choice of f�ng. We now get 1
2 = � 1

2

Z
x[g(x)

�
f(x) + f(x)

�
g(x)]dx =

�Re
Z
x[g(x)

�
f(x)dx �

Z ����xg(x) �
f(x)

���� dx and 1
4 � (

Z ����xg(x) �
f(x)

���� dx)2 � Z x2 jf(x)j2 dxZ y2 ����^f(y)����2 dy
by (1). Equality holds if and only if g(x) = xf(x) a.e. implies

xZ
0

f 0n(t)dt !

xZ
0

g(t)dt =

xZ
0

tf(t)dt and so f(x) � f(0) =
xZ
0

tf(t)dt for all x which implies

f(x) = cedx
2

for some real numbers c and d. Of course, d < 0 because f 2 L2.
Conversely if f is of this type then equality holds in Heisenberg�s inequality. The

inequality
Z
(x � a)2 jf(x)j2 dx

Z
(y � b)2

����^f(y)����2 dy � 1
4 follows be changing f

to f(x+ a)e�ibx.

Alternative proof of the lemma above viz.:

If f 2 L2 and
Z
y2
����^f(y)����2 dy <1 then f is absolutely continuous, f 0 2 L2

and
^

f 0(x) = ix
^

f(x) a.e..

We have fn(x) = fn(0) +

xZ
0

f 0n(t)dt. This gives f(x) = f(0) +

xZ
0

g(t)dt since

fn ! f pointwise and f 0n ! g in L2. This completes the proof!
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