Uncertainty Principle

The uncertainty principle in Quantum Mechanics says that position and momentum cannot be simultaneously localized. There are many mathematical formulations of this principle. Here are a few:

1. If f is a unit vector in $L^{2}(\mathbb{R})$ and $a, b \in \mathbb{R}$ then $\int(x-a)^{2}|f(x)|^{2} d x \int(y-$ $b)^{2}|\hat{f}(y)|^{2} d y \geq \frac{1}{4}$.
2. Let $f \in L^{1}$. Then f and f cannot both have compact support
3. If f is a non-zero element of $L^{2}(\mathbb{R})$ then $m\{x: f(x) \neq 0\}$ and $m\{x$: $f(x) \neq 0\}$ cannot both be finite.
4. If f is a measurable function such that $|f(x)| \leq A e^{-\alpha x^{2}}$ and $|\hat{f}(y)| \leq$ $B e^{-\beta y^{2}}$ for all x where α, β are positive numbers with $\alpha \beta>1$ then $f=0$ a.e.
5. (Beurling) $f \in L^{2}, \iint|f(x)||\hat{f}(x)| e^{|x y|} d x d y<\infty$ implies $f=0$ a.e..

Proof of 1: we prove below that if the left side of the inequality is finite then f is absolutely continuous, $f^{\prime} \in L^{2}$ and $f^{\prime}(x)=-i x f(x)$ a.e.. Assuming this we have

$$
\int x^{2}|f(x)|^{2} d x \int y^{2}|\hat{f}(y)|^{2} d y=\int x^{2}|f(x)|^{2} d x \int|-\hat{y i f(y)}|^{2} d y=\int x^{2}|f(x)|^{2} d x \int\left|f^{\prime}(y)\right|^{2} d y
$$

(because $\left\|f^{\prime}\right\|_{2}^{2}=\left\|\hat{f^{\prime}}\right\|_{2}^{2}$). Thus $\int x^{2}|f(x)|^{2} d x \int y^{2}|\hat{f}(y)|^{2} d y \geq\left(\int\left|x f^{\prime}(x) \overline{f(x)}\right| d x\right)^{2}$.
Now note that

$$
x(f(x) \overline{f(x)})^{\prime}=x f^{\prime}(x) \overline{f(x)}+x f(x) f^{\prime}(x)=2 x \operatorname{Re}\left\{f^{\prime}(x) \overline{f(x)}\right\} \geq-2\left|x f^{\prime}(x) f(x)\right|
$$

Hence $\int_{\alpha}^{\beta}\left|x f^{\prime}(x) \overline{f(x)}\right| d x \geq-\frac{1}{2} \int_{\alpha}^{\beta} x\left(f(x) \overline{f(x))^{\prime}} d x=-\left.\frac{1}{2} x f(x) \overline{f(x)}\right|_{-\alpha} ^{\beta}+\frac{1}{2} \int_{\alpha}^{\beta} f(x) \overline{f(x) d x}\right.$.
Since the integrals on both sides converge in L^{2} as $\alpha \rightarrow-\infty$ and $\beta \rightarrow \infty$ it follows that $\left.x f(x) f(x)\right|_{-\alpha} ^{\beta}$ also converges to a finite limit as $\alpha \rightarrow-\infty$ and $\beta \rightarrow \infty$. This limit has to be 0 because, otherwise, $|x||f(x)|^{2}$ is bounded below which contradicts the fact that $f \in L^{2}$. Now $\int x^{2}|f(x)|^{2} d x \int y^{2}|\hat{f}(y)|^{2} d y \geq$ $\left(\int\left|x f^{\prime}(x) f \overline{f(x)}\right| d x\right)^{2} \geq \frac{1}{4} \int f(x) f \overline{(x)} d x=\frac{1}{4}$.

Lemma
If $f \in L^{2}$ and $\int y^{2}|\hat{f}(y)|^{2} d y<\infty$ then f is absolutely continuous, $f^{\prime} \in L^{2}$ and $f^{\prime}(x)=\operatorname{ixf}(x)$ a.e..

Proof of the lemma: let $\phi(x)=\int_{0}^{x} g(t) d t$ where $g \in L^{2}$ is such that $\hat{g}(y)=$ $i y f(y)$. Such a function g exists because $i y f(y) \in L^{2}$. Assume that $\phi \in L^{2}$. This fact is established below. [See Dym and McKean's proof of Heisenberg's inequality] Now $\int_{\alpha}^{\beta} e^{-i t x} \phi(x) d x=\int_{\alpha}^{\beta} e^{-i t x} \int_{0}^{x} g(t) d t d x=\left.\frac{e^{-i t x}}{-i t} \int_{0}^{x} g(t) d t\right|_{\alpha} ^{\beta}-\int_{\alpha}^{\beta} \frac{e^{-i t x}}{-i t} g(x) d x$. Noting that $\int_{\alpha}^{\beta} e^{-i t x} \phi(x) d x$ and $\int_{\alpha}^{\beta} \frac{e^{-i t x}}{-i t} g(x) d x$ converge in L^{2} norm as $\alpha \rightarrow$ $-\infty$ and $\beta \rightarrow \infty$ it follows that $\left.\frac{e^{-i t x}}{-i t} \int_{0}^{x} g(t) d t\right|_{\alpha} ^{\beta}$ also converges as $\alpha \rightarrow-\infty$ and $\beta \rightarrow \infty$. Hence $\left.\frac{e^{-i t x}}{-i t} \int_{0}^{x} g(t) d t\right|_{\alpha} ^{\beta}$ also converges as $\alpha \rightarrow-\infty$ and $\beta \rightarrow \infty$ to an L^{2} function (of t). If this limit is not zero on a set of positive measure then $e^{-i t \beta}$ and $e^{-i t \alpha}$ converge for all t in a set of positive measure which is false. This gives $\hat{\phi}(t)=\frac{\hat{g}(t)}{i t}=\hat{f}(t)$ a.e.. So $\phi=f$ a.e. which implies that f is absolutely continuous and $f^{\prime}=g \in L^{2}$. Also $f^{\prime}(t)=g(t)=i t f(t)$. This proves the lemma.

Back to the proof of the theorem:
Now let $g(x)=f(x+a) e^{-i b x}$. Then $\|g\|_{2}=1$ and we have $\int x^{2}|g(x)|^{2} d x \int y^{2}|\hat{g}(y)|^{2} d y \geq$ $\frac{1}{4}$. This gives $\int(x-a)^{2}|f(x)|^{2} d x \int(y-b)^{2}|\hat{g}(y-b)|^{2} d y \geq \frac{1}{4}$. But $\hat{g}(t)=$ $\hat{f}(t+b)$ so $\int(y-b)^{2}|\hat{g}(y-b)|^{2} d y=\int(y-b)^{2}|\hat{f}(y)|^{2} d y$ and this completes the proof when f a C^{∞} function with compact support.

Property 2 is easy: the Fourier inversion formula shows that f extends to an entire function and hence its zeros are isolated.

Property 3 can be proved using Poisson Summation Formula. (See my notes)
Property 4 follows from Property 5. We do not prove Property 5 here. A reference for this proof is: Lars Hormander, "A uniqueness Theorem Of Beurling for Fourier Transform Pairs", Ark. Math, 29, 237-240.

Proof of Heisenberg's inequality from Dym and McKean:
Let $f \in L^{2}$ and $\int x^{2}|f(x)|^{2} d x<\infty, \int y^{2}|\hat{f}(y)|^{2} d y<\infty$. Note that $\hat{f} \in$ L^{1} because $\left(\int_{\{|y|>1\}}|\hat{f}(y)| d y\right)^{2} \leq \int_{\{|y|>1\}} y^{2}|\hat{f}(y)| d y \int_{\{|y|>1\}} \frac{1}{y^{2}} d y<\infty$ and $f I_{\{|y| \leq 1\}} \in L^{2}([-, 1,1]) \subset L^{1}([-, 1,1])$. Thus f is a continuous function. There exists a sequence $\left\{\alpha_{n}\right\} \rightarrow \infty$ such that $\alpha_{n}\left|f\left(\alpha_{n}\right)\right|^{2}+\alpha_{n}\left|f\left(-\alpha_{n}\right)\right|^{2} \rightarrow 0$. For,
otherwise, $\liminf _{x \rightarrow \infty}\left\{x|f(x)|^{2}+x|f(-x)|^{2}\right\}>0$ and $\int\left\{|f(x)|^{2}+|f(-x)|^{2}\right\} d x=\infty$ which is a contradiction. We claim that there is a sequence $\left\{f_{n}\right\}$ in \mathcal{S} such that $\int\left(1+y^{2}\right)\left|\hat{f_{n}}(y)-\hat{f}(y)\right|^{2} d y \rightarrow 0$. For this just note that C^{∞} functions with compact support are dense in $L^{2}\left(\left(1+y^{2}\right) d y\right)$ and any C^{∞} function with compact support is the Fourier transform of some function in \mathcal{S}. Let g be a function in L^{2} such that $\hat{g}(y)=\operatorname{iyf}(y)$. Such a function exists because $\operatorname{iyf}(y) \in L^{2}$. Note that $\left\|f_{n}-f\right\|_{2}^{2}+\left\|f_{n}^{\prime}-g\right\|_{2}^{2}=\left\|f_{n}-f\right\|_{2}^{2}+\left\|\left(f_{n}^{\prime}\right)^{\wedge}-\hat{g}\right\|_{2}^{2}=\left\|\hat{f_{n}}(y)-\hat{f}(y)\right\|_{2}^{2}+$ $\left\|i y \hat{f}_{n}(y)-\hat{i y f}(y)\right\|_{2}^{2}=\int\left(1+y^{2}\right)\left|\hat{f}_{n}(y)-\hat{f}(y)\right|^{2} d y \rightarrow 0$. Thus, $f_{n} \rightarrow f$ and $f_{n}^{\prime} \rightarrow g$ in L^{2}.

Also, since $\hat{f} \in L^{1}$ and $\hat{f_{n}} \in L^{1}\left|f_{n}(x)-f(x)\right|^{2}=\left(\frac{1}{\sqrt{2 \pi}}\left|\int e^{i t x}\left(\hat{f_{n}}(y)-\hat{f}(y)\right)\right| d t\right)^{2} \leq$ $\frac{1}{\sqrt{2 \pi}}\left(\int\left(1+y^{2}\right)\left|\hat{f_{n}}(y)-\hat{f}(y)\right|^{2}\right)\left(\int \frac{1}{1+y^{2}} d y\right)$. Thus, $f_{n} \rightarrow f$ uniformly.

Remark: use these facts we prove that the function ϕ defined in the earlier proof is indeed an L^{2} function: Clearly $\int_{0}^{x} f_{n}^{\prime}(t) d t \rightarrow \int_{0}^{x} g(t) d t$ for each x. Hence $\phi(x)=\lim \left[f_{n}(x)-f_{n}(0)\right]=f(x)-f(0)$. If $f(0)=0$ it follows that $\phi=f \in L^{2}$. For the general case let $f_{1}(x)=f(x)-f(0) e^{-x^{2} / 2}$. Then $f_{1}(0)=0, f_{1} \in L^{2}$ and $y \hat{f}_{1}(y)=y \hat{f}(y)-f(0) e^{-t^{2} / 2} \in L^{2}$. If the lemma above holds in the special case $f(0)=0$ we can conclude that f_{1} is is absolutely continuous, $f_{1}^{\prime} \in L^{2}$ and $f_{1}^{\prime}(x)=i x f_{1}(x)$ a.e.. This shows that f is is absolutely continuous, $f^{\prime} \in L^{2}$ and $f^{\prime}(x)=i x f(x)$ a.e..

Back to Dym and McKean's proof: $\int x^{2}|f(x)|^{2} d x \int y^{2}|\hat{f}(y)|^{2} d y=\int x^{2}|f(x)|^{2} d x \int|\hat{g}(y)|^{2} d y=$ $\int x^{2}|f(x)|^{2} d x \int|g(y)|^{2} d y$
$\geq\left(\int|x f(x) g \overline{(x)}| d x\right)^{2}$.
Now $\int x[g(x) \overline{f(x)}+f(x) \overline{g(x)}] d x=\lim _{n \rightarrow \infty} \int_{-\alpha_{n}}^{\alpha_{n}} x[g(x) f \overline{f(x)}+f(x) \overline{g(x)}] d x$
$=\lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty} \int_{-\alpha_{n}}^{\alpha_{n}} x\left[f_{k}^{\prime}(x) f_{k} \overline{(x)}+f_{k}(x) f_{k}^{\prime} \overline{(x)}\right] d x$ (because $f_{k} \rightarrow f$ and $f_{k}^{\prime} \rightarrow g$
in $\left.L^{2}\right)$. Hence $\int x[g(x) f(x)+f(x) g \overline{(x)}] d x=\lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty} \int_{-\alpha_{n}}^{\alpha_{n}} x\left[\left|f_{k}\right|^{2}\right]^{\prime}(x) d x=$ $\lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty}\left\{\left.x\left|f_{k}\right|^{2}(x)\right|_{-\alpha_{n}} ^{\alpha_{n}}-\int_{-\alpha_{n}}^{\alpha_{n}}\left|f_{k}(x)\right|^{2} d x\right]=-1$ since $\|f\|_{2}=1$ and $\lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty} \alpha_{n}\left|f_{k}\right|^{2}\left(\alpha_{n}\right)=$ $\lim _{n \rightarrow \infty} \alpha_{n}|f|^{2}\left(\alpha_{n}\right)=0$ and $\lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty} \alpha_{n}\left|f_{k}\right|^{2}\left(-\alpha_{n}\right)=\lim _{n \rightarrow \infty} \alpha_{n}|f|^{2}\left(-\alpha_{n}\right)=0$ by our choice of $\left\{\alpha_{n}\right\}$. We now get $\frac{1}{2}=-\frac{1}{2} \int x[g(x) f \overline{(x)}+f(x) \overline{g(x)}] d x=$ $-\operatorname{Re} \int x\left[g(x) f(x) d x \leq \int|x g(x) f \overline{f(x)}| d x\right.$ and $\frac{1}{4} \leq\left(\int|x g(x) f(x)| d x\right)^{2} \leq \int x^{2}|f(x)|^{2} d x \int y^{2}|\hat{f}(y)|^{2} d y$ by (1). Equality holds if and only if $g(x)=x f(x)$ a.e. implies $\int_{0}^{x} f_{n}^{\prime}(t) d t \rightarrow$ $\int_{0}^{x} g(t) d t=\int_{0}^{x} t f(t) d t$ and so $f(x)-f(0)=\int_{0}^{x} t f(t) d t$ for all x which implies $f(x)=c e^{d x^{2}}$ for some real numbers c and d. Of course, $d<0$ because $f \in L^{2}$. Conversely if f is of this type then equality holds in Heisenberg's inequality. The inequality $\int(x-a)^{2}|f(x)|^{2} d x \int(y-b)^{2}|\hat{f}(y)|^{2} d y \geq \frac{1}{4}$ follows be changing f to $f(x+a) e^{-i b x}$.

Alternative proof of the lemma above viz.:
If $f \in L^{2}$ and $\int y^{2}|\hat{f}(y)|^{2} d y<\infty$ then f is absolutely continuous, $f^{\prime} \in L^{2}$ and $f^{\prime}(x)=\operatorname{ixf}(x)$ a.e..

We have $f_{n}(x)=f_{n}(0)+\int_{0}^{x} f_{n}^{\prime}(t) d t$. This gives $f(x)=f(0)+\int_{0}^{x} g(t) d t$ since $f_{n} \rightarrow f$ pointwise and $f_{n}^{\prime} \rightarrow g$ in L^{2}. This completes the proof!

